Year 5 End of Year Expectations

Strand	Autumn	Spring	Summer
	- count forwards or backwards in steps of powers of 10 for any given number up to 1000000 - interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero - read, write, order and compare numbers to at least 1000000 and determine the value of each digit - round any number up to 1000000 to the nearest $10,100,1000,10000$ and 100000 - solve number problems and practical problems that involve all of the above - read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	- count forwards or backwards in steps of powers of 10 for any given number up to 1000000 - interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero - read, write, order and compare numbers to at least 1000000 and determine the value of each digit - Pupils use number in context, including measurement. - Pupils extend and apply their understanding of the number system to the decimal numbers and fractions that they have met so far. - They should recognise and describe linear number sequences, including those involving fractions and decimals, and find the term-to-term rule. - They should recognise and describe linear number sequences (for example, 3, 3 $\frac{1}{2}$, 4, $4 \frac{1}{2} \ldots$), including those involving fractions and decimals, and find the term-to-term rule in words (for example, add $\frac{1}{2}$).	- count forwards or backwards in steps of powers of 10 for any given number up to 1000000 - interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero - read, write, order and compare numbers to at least 1000000 and determine the value of each digit

EK0

- add and subtract whole numbers with more than 4 digits, (and decimals with up to 3 dp) including using formal written methods (columnar addition and subtraction)
- Pupils practise using the formal written methods of columnar addition and subtraction with increasingly large numbers to aid fluency (see Mathematics Appendix 1).
- add and subtract numbers mentally with increasingly large numbers
- They practise mental calculations with increasingly large numbers to aid fluency (for example, 12 462-2300=10162).
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- multiply numbers up to 4 digits by a oneor two-digit number using a formal written method, (including grid) including long multiplication for two-digit numbers
- multiply and divide numbers mentally drawing upon known facts
- divide numbers up to 4 digits by a onedigit number using the formal written method of short division and interpret \dagger remainders appropriately for the contex \dagger
- Express remainders in different ways e.g. 98 $4=98 / 4=24 \mathrm{r} 2=24 \frac{1}{2}=24.5 \sim 25$
- Use mental arithmetic strategies when appropriate, e.g. partitioning, chunking and jottings

MNA

- multiply and divide whole numbers and those involving decimals by 10, 100 and 1000
- Pupils use multiplication and division as inverses to support the introduction of ratio in year 6 , for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and dividing by powers of a 1000 in converting between units such as kilometres and metres.
- They apply all the multiplication tables and related division facts frequently, commit them to memory and use them confidently to make larger calculations.
- Distributivity can be expressed as $a(b+c)$ $=a b+a c$.
- recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100 , and as a decimal plus FDP equivalence.
- solve problems which require knowing percentage and decimal equivs. of $\frac{1}{2}, \frac{1}{4}, \frac{3}{4}$ $\frac{1}{5}, \frac{2}{5}, 3 / 5, \frac{4}{5}$ and those fractions with a denominator of a multiple of 10 or 25 .
- Find fractions and percentages of amounts

令

- Pupils should be taught throughout that percentages, decimals and fractions are different ways of expressing proportions.
- Pupils should make connections between percentages, fractions and decimals (for example, 100% represents a whole quantity and 1% is $\frac{1}{100}, 50 \%$ is $\frac{50}{100}, 25 \%$ is $\frac{25}{100}$) and relate this to finding 'fractions of'.

52

- Solve simple problems involving similar shapes where the scale factor is known or can be found.
- use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling.
- convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre)
- Pupils use their knowledge of place value and multiplication and division to convert between standard units.
- measure and calculate the perimeter of composite rectilinear shapes including using the relations of perimeter to find unknown lengths in centimetres and metres
- Pupils calculate the perimeter of rectangles and related composite shapes, including using the relations of perimeter or area to find unknown lengths. Missing measures questions such as these can be expressed algebraically, for example $4+2 b$ $=20$ for a rectangle of sides 2 cm and $b \mathrm{~cm}$ and perimeter of 20 cm .
- Read, write and convert time between analogue and digital 12 and 24 hour clocks.
- Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts. e.g. In a class there are 30 children. For every 3 boys there are 2 girls. How many boys in the class? Problems e.g. altering a recipe from 2-6 people e.g. 1 egg, 3 spoons of flour - 3 eggs, 9 spoons of flour.
- understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints
- calculate and compare the area of rectangles (including squares) including using the relations of area to find unknown lengths,, and including using standard units, square centimetres (cm^{2}) and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes
- calculate the area from scale drawings using given measurements
- Pupils calculate the area from scale drawings using given measurements.
- solve problems involving the calculation of percentages $10 \% 25 \% 50 \% 75 \% 40 \%$ etc
- estimate volume [for example, using $1 \mathrm{~cm}^{3}$ blocks to build cuboids (including cubes)] and capacity [for example, using water
- solve problems involving converting between units of time
- Pupils use all four operations in problems involving time and money, including conversions (for example, days to weeks, expressing the answer as weeks and days).

CNO

Geometry (Properties of Shape)	- identify 3-D shapes, including cubes and other cuboids, from 2-D representations - distinguish between regular and irregular polygons based on reasoning about equal sides and angles.	- know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles - identify: - angles at a point and one whole turn (total 360°) - angles at a point on a straight line and $\frac{1}{2}$ a turn (total 180°) - other multiples of 90° - use the properties of rectangles to deduce related facts and find missing lengths and angles - for parallel lines and right angles.	- draw given angles, and measure them in degrees (${ }^{\circ}$) - Pupils use the term diagonal and make conjectures about the angles formed between sides, and between diagonals and parallel sides, and other properties of quadrilaterals, for example using dynamic geometry ICT tools. - Pupils use angle sum facts and other properties to make deductions about missing angles and relate these to missing number problems.
	- (identify, describe and) represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed.		- Pupils recognise and use reflection and translation in a variety of diagrams, including continuing to use a 2-D grid and coordinates in the first quadrant. Reflection should be in lines that are parallel to the axes.
$\begin{aligned} & \tilde{u} \\ & \frac{0}{\hbar} \\ & \frac{\omega}{\sigma} \\ & \vdots \\ & \vdots \end{aligned}$	- complete, read and interpret information in tables, including timetables. - solve comparison, sum and difference problems using information presented in a line graph	- complete, read and interpret information in tables, including timetables. - solve comparison, sum and difference problems using information presented in a line graph	- Pupils connect their work on coordinates and scales to their interpretation of time graphs. - Pupils begin to decide which representations of data are most \dagger appropriate and why.
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { O} \\ & \frac{0}{6} \end{aligned}$			- Extended balance and missing number puzzles - Counting and describing non-linear sequences eg square and triangular numbers...Fibonacci - Line graphs in 4 quadrants, including finding co-ordinates of a line given the 'rule', position to term

- Problem solving with line graphs and sequences

